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In this progress report, we summarize our accomplishments in the past year on the SALAMI 
(Structural Analysis of Large Amount of Music Information) project. Our focus has been to 
develop a state-of-the-art infrastructure for conducting research in music structural analysis. 
The structure of this report as well as the division of our tasks has been divided naturally into 
three parts: the McGill group mostly worked on the annotation and the creation of ground 
truth data (Section 2); the Oxford and Southampton group developed a new model of data 
representation of sequential and hierarchical divisions (Section 3); and the University of 
Illinois group is building the computational infrastructure to collect the data, test the 
algorithms, and to perform the massive calculations (Sections 4–6).  
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Before executing the structural analysis algorithms on the several hundred thousand 
recordings that were assembled for the SALAMI project, we need to provide evidence that 
the algorithms will succeed at generating reasonable descriptions of each piece’s structure. 
This demands the creation of a human-annotated ground truth dataset to validate and, where 
necessary, to train the algorithms. 
Creating a ground truth dataset is a complex task that raises several issues, foremost among 
them: how can we assert that the data collected represents the “truth”? We acknowledge—as 
must anyone studying musical form—that the form of a piece of music is not an empirically 
measurable feature, but rather a subjective feature that requires some amount of perception 
and creative interpretation on the part of the listener. Nevertheless, the study of form attests 
to the fact that with shared training, different listeners can agree to a considerable extent on 
how to describe the form of pieces. 

This section describes important attributes of the ground truth dataset that was collected, 
including: the provenance and genre of the pieces included; the annotation format used to 
encode the descriptions; and the annotation procedure employed. The account below includes 
some of the main reasons for the design of the database, but a fuller justification and the 
timeline of the project appear in the following section. 
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The choice of recordings to include was influenced by the goals of the project and the 
practicality of assembling and annotating a large collection of works. 

One of SALAMI’s major goals was to provide structural analyses for as wide a variety of 
music as possible. Whereas previous annotated databases of structural descriptions had 
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generally focused on studio recordings of popular music, with an additional few focusing on 
classical music, the SALAMI database should also include jazz, folk, the music of cultures 
from across the globe, known colloquially as “world” music, and live recordings. The ground 
truth dataset includes a representative sample of music from all these genres. The final 
composition of the database according to these genres is shown in Table 1. 

Table 1 The number of annotated pieces by genre 

 Double-keyed Single-keyed Total Percentage 

Classical 159 66 225 16% 

Jazz 225 12 237 17% 

Popular 205 117 322 23% 

World 186 31 217 16% 

Live recordings 273 109 382 28% 

Total 1048 335 1383 100% 

 
Double keying refers to collecting two independent annotations per recording. The majority 
of pieces are double-keyed, but in some cases single keying was appropriate. Most 
importantly, roughly 120 of the single-keyed pieces belong to other widely-used databases of 
structural annotations: the RWC (Goto et al. 2002) and Isophonics1 collections. Single keying 
these files allows us to economically compare our results with those of others. 
It would be difficult to maintain the correct proportion of genres if recordings were collected 
from a database such as the Internet Archive2 with limited and inconsistent metadata. 
Therefore most of the recordings were collected from Codaich (McKay et al. 2006), a large 
database with carefully curated metadata, including over 50 subgenre labels which can be 
categorized under the four domain labels used here. The live recordings are all gleaned from 
the Internet Archive. While the genre of each of these recordings is not known, the majority 
appears to be in the popular and jazz categories. 
The project hired nine annotators who contributed on average 270 annotations. Each 
annotator had a B.A. in music and was pursuing either a M.A. or Ph.D. in Music Theory, or a 
Ph.D. in Composition at McGill University. 
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Musicological or music theoretical analyses of structure may take many forms, but when 
algorithms are involved, the possibilities for an annotation format are constrained: for 
example, while each annotation could consist of a paragraph-length description of the form, 
this would be of little use to most imaginable algorithms. 

                                                
1 http://www.isophonics.org/datasets 
2 http://www.archive.org/details/audio 
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In order that the annotation format be machine readable, we limited the type of information 
that the descriptions will contain, yet it was designed to be able to describe the form of 
virtually any kind of music. Because the annotations were created by humans, the 
annotations were also designed to be easily writeable and readable by humans. 

The most important information in our annotations is the segmentation of the recording into 
sections, and the segment labels that indicate which are similar to or repetitions of one 
another. 
Most structural annotations encode this information in a very simple format: each segment 
boundary time is enumerated along with its label. As pointed out by Peeters and Deruty 
(2009), however, these labels may be inconsistently applied due to the conflation of the 
musical surface, the function of a particular passage, and the instrumentation. For instance, 
an introduction section that is repeated as a closing may receive two distinct labels: “intro” 
and “outro.” Previous corpora of structural annotations that suffer from this ambiguity, such 
as the Center for Digital Music’s Beatles annotations,3 may not be helpful for validation 
purposes. However, other corpora such as RWC (Goto et al. 2002) use a vocabulary that is 
too highly constrained to be applicable to all the genera of music included in SALAMI. 

Peeters and Deruty proposed a novel annotation format, which uses a set vocabulary of 21 
labels that distinguish between the “musical similarity” between sections, and the “musical 
role” and “instrument role” of each section. We adopted this tripartite distinction, but over 
the course of testing made several modifications to suit our purposes. 

The final annotation scheme consisted of separate tracks for musical similarity, function, and 
lead instrument: 

The musical similarity track consisted of two annotations at different scales (large and small), 
one finer-grained than the other, each identifying which portions of the recording use similar 
musical ideas. Simple letter labels were used; the large-scale track generally used five or 
fewer labels, while the small-scale track could use as many labels as necessary. Special labels 
indicate silence (“s”) and non-music, such as applause or banter in a live recording (“Z”). 
Varying degrees of similarity could be identified using prime symbols ( ' ). Every portion of 
the recordings was labeled in both large- and small-scale tracks. 
A separate function track, generally aligned with the large-scale segment boundaries, 
provides function labels where appropriate. The possible labels were drawn from a strictly 
limited vocabulary of roughly 20 labels. Some of these labels express similar functions and 
can be grouped together if desired: for example, “pre-verse,” “pre-chorus,” “interlude,” and 
“transition” all express similar functions and could, if desired, all be re-labeled as 
“transition.” 
A separate lead instrument track, generally aligned with the small-scale segment boundaries, 
indicates wherever a single instrument or voice takes on a leading, usually melodic role. The 
vocabulary for these labels was not constrained, and unlike the other tracks, lead instrument 
labels could potentially overlap, as in a duet. Note that as with the function track, there may 
be portions of the recording with no lead instrument label. 
A graphical example of the annotation scheme is shown below. 

                                                
3 http://www.isophonics.org/content/reference-annotations 
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In the written format devised for this scheme, the example in Figure 1 would begin as: 
0.000 silence 
8.145 verse, A, a, (vocal 
20.31 b 
29.04 verse, A, a 
41.74 b, vocal) 
49.82 B, c, solo 
56.20 d 
etc. 

,/7/! ;(#)$*&#+<2=4<+1&)2=(<2%>+
The following function labels are permitted: introduction, verse, chorus, bridge, 
instrumental, solo, transition, interlude, pre-chorus, pre-verse, head, main theme, 
(secondary) theme, exposition, development, recapitulation, outro, coda, fadeout, silence, 
and end. Working definitions for each term are specified in our Annotator’s Guide (see 
Figure 2 for a summary). 

Note that some of the labels are genre-specific alternatives to others: for example, the head in 
jazz song is analogous to a chorus in a pop song or a main theme in some classical genres. 
Additionally, some subsets of the vocabulary can function as synonym-groups that can be 
collapsed onto a single function label if desired. For example, while our Annotator’s Guide 
suggests a fine distinction between pre-chorus, pre-verse, interlude, and transition sections, 
they are all synonyms of transition. Specifying these groups enables someone wanting to 
train an algorithm on the SALAMI data to observe these distinctions or collapse the synonym 
group onto a single label. 

Together, the terms exposition, development, and recapitulation are specific to sonata form 
and may in special cases be used to annotate a third level of structural relationships on a scale 
larger than the usual large-scale labels. However, development also has wider applicability 
and may be used to label the function of a “contrasting middle” section in many contexts, 
from various classical genera to progressive rock. 
The vocabulary is separated into various categories below. The instrumental, transition and 
ending groups are all synonym groups. The genre-specific alternatives are analogous to the 
basic functions but are not specific to popular music. The form-specific alternatives are 

Figure 1: An example of musical structure of a piece 
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especially included for certain classical forms, although among these the term development 
has broader use. Note that in the ending group, the label fadeout is a special label that can 
occur in addition to any other label. For example, if the piece fades out over a repetition of 
the chorus, then the last section may be given both labels: chorus and fadeout. 

 
Figure 2: Summary of label vocabulary 
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The annotation format and data collection took place over the course of 10 months, although 
most of the data was collected within the first 16 weeks. 

First, previous annotation formats and databases of annotations were researched. Potential 
annotation formats were devised and tested by the project leaders, and a tentative format was 
set at the end of two months. 
Next, candidate annotators were trained in the annotation format and in the Sonic Visualiser 
environment (Cannam et al. 2006), which was used to make the annotations. Candidates who 
were able and willing to continue with the project were hired and data collection began the 
following week. 
Because the annotation format had not been tested on a significant scale before work began 
in earnest, the first six weeks of data collection were conceived as an extended trial period. 
Every week or two, annotators were given a new batch of assignments in a new genre, 
beginning with popular, which was expected to be the least problematic, and continuing in 
order with jazz, classical, and world, which were predicted to be of increasing difficulty. 

After each new assignment, we solicited feedback from the annotators on difficult pieces 
they encountered and weaknesses or ambiguities in the annotation format that were revealed. 
Group meetings were held so that these general problems could be discussed. Based on the 
feedback, some annotation rules were changed (e.g., the function label vocabulary expanded 
or contracted), and new heuristics were introduced (e.g., we introduced a preference to have 
segment boundaries fall on downbeats even in the presence of pickups). In at least one case, a 



  
6 

major revision of the format originated from annotator feedback: our original annotation 
format used a single music similarity track with some hierarchical information embedded, 
but early on we switched to the two-track system described in the previous section. 
At the end of the six weeks, supervision of the annotators was relaxed and any problems 
addressed on an ad hoc basis. Data collection continued over the next 12 weeks, by which 
point the majority of assignments had been completed. The median transcribing time was 15 
minutes per track and majority of transcribing took between 10 and 25 minutes. In general, 
more time was needed for Classical and World music than Popular and Jazz music but this 
may be attributed to the generally longer time of the former group. 

7 32$2+%46%454#$2$*&#B+C4D:4#$+E#$&<&D>+
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Existing semantic representations of music analysis encapsulate narrow sub-domain concepts 
and are frequently scoped by the context of a particular Music Information Retrieval (MIR) 
task. Segmentation is a crucial abstraction in the investigation of phenomena which unfold 
over time; we present a Segment Ontology as the backbone of an approach that models 
properties from the musicological domain independently from MIR implementations and 
their signal processing foundations, whilst maintaining an accurate and complete description 
of the relationships that link them. This framework provides two principal advantages which 
are explored through several examples: a layered separation of concerns that aligns the model 
with the needs of the users and systems that consume and produce the data; and the ability to 
link multiple analyses of differing types through transforms to and from the Segment axis. 

As the quantity of data continues to grow, many potential research questions can be 
envisaged based on the comparison and combination of large quantities of MIR algorithmic 
output; to support use (and re-use) of data in this way attention must be paid to the way it is 
stored, modeled, and published. It has already been shown that using a Linked Data approach 
can enable joins of this nature at the level of signal and collections (Page et al. 2010).  In the 
context of SALAMI project and in an effort to model the segmentation task itself in more 
detail, and to enable Linked Data joins at the result level, we present the Segmentation 
Ontology, focused on modeling division of temporal-signal (principally music) into subunits. 

The remainder of this section will detail the ontology: after introducing the conceptual 
framework upon which the ontology is based and existing complementary ontologies used in 
our approach, we detail the classes and properties used, and then present some examples. 

7/, ;&(#'2$*&#2<+)&#)46$5+
Many systems developed for MIR tasks are constructed of common elements. To support the 
“joining” of disparate MIR components into a complete system, and to enable the use of 
analytic output by domain experts (e.g., musicologists) we consider the concepts core to each, 
and broadly categorize these as: 

1. Domain-specific musicology: concepts, in our use case, from musicology, and the 
human interpretation of music and sound. 
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2. Domain-specific MIR tasks: parts of the model that relate to an MIR task, such as the 
elements extracted by a feature extractor, common labels from a classifier, distance 
metrics from a system such as Rhodes et al. (2010). 

3. Music-generic: common concepts that transcend domain-specific as Intervals, 
Segments, etc. 

4. High-level Relationships: the absolute and relative relationships between music-
generic elements, TimeLines and SegmentLines; and the maps between them. 

While supporting other domain-specific categorizations is a motivating use-case for the 
segment ontology, we explore the two most directly applicable to existing MIR systems: 
musicology and MIR tasks. To illustrate this conceptual distinction we consider an example 
of structural segmentation: 

1. Domain-specific musicology concepts are elements of form, such as intro, verse, 
chorus, and bridge. These are likely to be applied to sections of the signal, for 
example “this section is a bridge.” 

2. Domain-specific MIR tasks encompass artifacts of the structural segmentation task, 
for example a classifier might identify (and potentially label) sections that are similar; 
a contributor task might identify chords. Again, these concepts are likely to be 
applied to sections of signal. 

3. Music-generic concepts are common to different tasks and applications. Here the 
segments would be those annotated using the domain-specific concepts and the 
alignments and relationships between them (e.g., the segment labelled as a chorus 
follows the segment labelled as a verse; that one chord follows another). 

4. Finally high-level relationships capture mappings between the musicologically 
labelled segments and the MIR task derived segments. 

A further requirement when considering MIR tasks is the ability to capture provenance of 
both data and method: for example the algorithmic elements used by the tasks including the 
software versions and how and when they were run; or identifying factors of human-
generated ground truth. 

7/7 F4<2$4'+:&'4<5+
A number of existing ontologies are relevant and either extended by or used in conjunction 
with the Segment Ontology. 

The Timeline Ontology (TL) primarily describes discrete temporal relationships. Following 
early development for the signal-processing domain it has been more widely used to describe 
temporal placement and alignment of Things (Abdallah et al. 2006). It also introduces the 
TimeLineMaps classes, which encode an explicit mapping from one TimeLine to another 
(e.g., from a ContinuousTimeLine to a DiscreteTimeLine via a UniformSamplingMap). It 
explicitly names AbstractTimeLines but, to our knowledge, no examples using this and the 
associated Maps exist or are in use. The TimeLine ontology is used directly or through 
alignment with equivalent relative concepts throughout our approach and our examples. 

The Music Ontology (MO) models high-level concepts about and around music including 
editorial, cultural, and acoustic information (Raimond et al. 2007). To express temporal 
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information it incorporates both the TimeLine and Event Ontologies. We link to the Music 
Ontology through instances of audio signal against which we are asserting segmentation and 
domain-specific labeling. 
The Similarity Ontology (SIM) was conceived to model music similarity (Jacobson et al. 
2009). The current version’s use of blank nodes to express associations between class 
instances allows an efficient general unnamed representation of any type of association (so 
the ontology could perhaps be more aptly described as one for “associations”). We use the 
Similarity Ontology throughout our approach to associate music-generic and domain-specific 
concepts. 

7/? E#$&<&D>+2#'+266%&2).+
While the Segment Ontology that follows is the backbone of our approach, it is only a 
mechanism to facilitate our overall method: recognizing that there can, and should, be many 
models of domain-specific knowledge, and that music-generic and high-level relationships be 
used to move across these boundaries and make links between the knowledge within. As 
such, we use Segments as a music-generic dimension between explicitly temporal and 
implicitly (or indirectly) temporal concepts (and ontologies). 
The core concepts and properties in the Segment Ontology are shown in Figure 3 and 
detailed below: 
Segment: an Interval with the addition of a “label” expressing an association (SIM) that can 
be “placed” upon TimeLines (TL) and SegmentLines. There are five intraSegment properties, 
to express alignment or membership: segmentBefore, segmentAfter, segmentBegins, 
segmentEnds, and contains. These are all sub-properties from TL with the exception of 
contains, a property necessary when alignment or membership cannot be inferred from time 
(e.g., from NonSequentialMap). 
SegmentLine: an AbstractTimeLine and a relative complement to the temporal TimeLine. 

SegmentLineMap: a means to express a high-level relationship between SegmentLines or 
with TimeLines; can imply relationships between Segments on SegmentLines and 
TimeLines; similarly a SegmentLineMap can be used to infer properties between Segments. 
Three subclasses are specified: RatioMap a fixed integer number of Segments mapped from 
one SegmentLine to another; NonLinearMap, mapping is not fixed across SegmentLines, 
however sequential order of Segments is preserved; and NonSequential-Map, the least 
specified, whereby sequential order of Segments is not preserved across SegmentLines. 
Thus, the segment ontology encodes the high-level relationships and music-generic concepts 
introduced in Section 3.2. Domain-specific annotations, such as MIR-task and musicology, 
will be described independently using appropriate ontologies. We model the relationships 
that stem from these as domain-specific terms in the same way: as (associative) annotations 
to Segments, SegmentLine, and TimeLines, and the high-level relationships between them. 
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Figure 3: The class structure of Segment Ontology. Concepts from TimeLine ontology 

are on the grey background. 
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Throughout these examples we reference and compare an existing analysis of the Beatles 
“Help!” Figure 4 is a generic visualization of the analytic structures that can be found in this 
piece of music; it is worth recognizing that although Figure 4 does not use any specific 
ontology or data structure, it does invoke a temporal dimension most would apply as their 
default interpretation. 

 

 
Figure 4: Segmentation of the song “Help!” by The Beatles by song structure, chord, 

and beat, with alignment shown. 

In these examples we have also arranged the models according to the categorization 
introduced in Section 3.2 to demonstrate how the Segment Ontology enables an approach 
that bridges these concepts, that is: “R” for High-level Relationships, “M” for music-generic, 
and “D” for domain-specific. 

We also introduce the notion of a “Mythical Music Taxonomy”, which represents an 
ontological structure describing musicological knowledge (as distinct from MIR domain-
specific), and the detail of which is beyond the scope of this paper. 
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Figure 5: Structural segmentation modeled with a discrete TimeLine 

Figure 5 shows structural segmentation with a discrete TimeLine. The analysis is a ground 
truth, performed by a human (captured using sim:method), and the relationship between the 
ground truth label (e.g., “Verse”) and the segment is through a b-node from the Similarity 
Ontology. Segments are tied to a physical TimeLine, and the sequencing of Segments is 
through explicit temporal markers (times) on that TimeLine. The relationship between the 
artistic work (“Help!”) and the analysis is through a recording (a Signal) that is also tied to 
the TimeLine; this representation is also used in the subsequent examples. 
Figure 6 shows structural segmentation with a relative SegmentLine, the result of using text 
analysis of lyrics to perform (relative) structural segmentation. Again the procedure (in this 
case an algorithm) is shown as sim:method as in Figure 5. Note that the segments are just 
given a label (e.g., “Verse” or “Refrain” but with no meaning). 

 

 

Figure 6: Structural segmentation modeled with a relative SegmentLine 
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Figure 7: Extending Figure 6 to express relationships to musicological concepts 

Figure 7 relates segmented analysis to musical concepts, an extension of Figure 6 into the 
musicological domain. In addition to the simple labels typically used for classification by a 
machine-learning algorithm, here we can also represent classification of a Segment to the 
specific verse of this specific work, and the relationship from that specific verse to the 
musicological concept of “Verse” (as represented in the Mythical Music Taxonomy).  

? 8<D&%*$.:+412<(2$*&#+
As part of an additional effort to supplement the evaluation results over the course of the last 
two MIREX structure evaluations,4 five structural analysis algorithms were run and evaluated 
against a set of over 1,000 songs annotated at McGill. The average processing time for each 
of the algorithms is shown in Table 2. To evaluate the algorithms, a broad range of metrics 
exist. For brevity, we present only frame-pair clustering (FPC) (Levy and Sandler, 2008). 
Both the algorithm result and ground truth are divided into short time frames (e.g. 100 ms). 
All pairs of frames are subsequently analyzed. The pairs in which both frames share the same 
label (i.e. belong to the same cluster) form the sets PE (for the system results) and PA (for the 
ground truth). We can therefore calculate the pair-wise precision, P; recall, R; and F-Measure, 
F, as follows: 

                                                
4 http://www.music-ir.org/mirex 
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The overall evaluation results show a correspondence with previous MIREX evaluations. 
Most algorithms tend to annotate at a coarser level of hierarchy. Moreover, since each 
musical piece has multiple annotations, we are able to evaluate how closely two humans 
come to agreement on the structural annotation of a piece. The evaluation results of a 
selection of three algorithms and the human-to-human evaluation can be seen in Table 3.  
The evaluations tend to enforce two findings: First, human-to-human agreement is still 
higher than algorithm-to-human agreement (Frame pair clustering F-measure of 0.721 vs. 
0.565, respectively). This leads to the conclusion that structural annotation by machines is 
still not a solved problem. Secondly, although humans “outperform” machines currently, 
human-to-human evaluations also indicate that there is quite a bit of disagreement between 
human expert annotators on how pieces should be structurally segmented. It is this finding 
that reinforces our belief for the SALAMI project that musical pieces should be annotated by 
as many “experts” as possible (in this case machine experts). It is from the opinions of 
multiple sources that we believe the most benefit can be drawn.  

Table 2: Structural analysis processing time by different algorithms 
8<D&%*$.:5+ 814%2D4+6%&)455*#D+$*:4+
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WB1 (Weiss and Bello 2010) 2.28 

GP7 (Peeters 2007) 2.64 

BV1 & BV2 (Sargent et al. 2010) 2.94 

MND1 (Mauch et al. 2009) 5.60 

MHRAF2 (Martin et al. 2009) 6.38 

 

 
 

Table 3: Evaluations of three algorithms and a human against a ground truth 

!"#$%&'()* +,-*+.)/012%/* +,-*,%/3&1&$4* +,-*5/30""*
Human 0.7211 0.7692 0.7453 
MHRAF2 0.5647 0.6319 0.5782 
MND1 0.5590 0.6611 0.5848 
WB1 0.5522 0.5928 0.6091 
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An important aspect of the SALAMI project is to allow users and the community to explore 
and interact with the structural annotations generated for a large music digital library. To this 
end, an interactive visualizer with structurally aware music playback has been developed. 
The visualizer, seen in Figure 8, plots all available annotations for a given musical piece. The 
plot represents a timeline of the piece with each labeled rectangular segment corresponding 
to a structural segment of the piece. The visualization can be zoomed and panned. Moreover, 
clicking on a segment will play the portion of the audio corresponding to that segment. 
Therefore users can quickly browse similarly labeled segments to find important repetitions, 
themes, etc.   

 
Figure 8: A screenshot of SALAMI’s interactive visualizer and audio player interface 

for exploring multiple structural analyses 

N O&%A+*#+6%&D%455+
The SALAMI project is currently in the process of executing its main goal, namely the 
annotation of hundreds of thousands of music pieces by multiple machine experts. This goal 
represents a significant resource management problem. Each algorithm, on average, spends 
one to five minutes of compute time to annotate a single piece of music. Therefore the 
annotation of, for example, 200,000 pieces by five different algorithms requires roughly five 
to six years of compute time. Leveraging available supercomputing infrastructure is the only 
means to achieve this computational goal in a short amount of time.  

However, modern supercomputing infrastructures pose some additional problems over 
evaluating current structure algorithms on smaller datasets, as has been done to date. Firstly, 
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most structure algorithms are in the research development stage and are not commercial-
grade code. With little access and availability to install custom libraries on a supercomputing 
cluster, each existing algorithm must be packaged such that it is a completely independent 
and platform-agnostic entity. Secondly, audio data, even compressed, represents a fairly large 
disk storage challenge. Persistent data storage of large amounts of data is not available on 
most shared supercomputers.  

To address these challenges, each structure algorithm has now been bundled with all 
necessary libraries and dependencies and scripted such that it represents a platform-
independent object with no need for external libraries or compute engines (e.g., MATLAB) 
to be installed on the cluster. Additionally, the entire SALAMI collection has been migrated 
to a persistent tape mass storage device. The audio data is in a lossy compressed format and 
its current total is 500 GB (200,000 tracks). The audio data will be fetched as needed during 
computation, decompressed on the cluster end, and the algorithms run against the 
decompressed raw audio. Decompressing on the supercomputing side means data can be 
transferred more quickly at the expense of some computation time in uncompressing the data. 
The SALAMI team is currently negotiating the actual supercomputer that will be used for the 
runs (possibilities are at Illinois, Tennessee, and San Diego).  

P Q&#)<(5*&#5+
As one of the first experiments in large-scale music data mining, we have made tremendous 
progress by creating a large amount of high-quality annotation data and in modeling the data 
structure needed for this type of time-based hierarchically organized data stream, in our case, 
music. Furthermore, based on our experiences in running the annual MIREX evaluations, we 
were able to relatively quickly construct a robust infrastructure to run the large-scale 
experiment. In the forthcoming months we will execute the “Big Run,” which involves 
running several structural analysis algorithms on over 200,000 music pieces. Through this 
work we are establishing a methodology for MIR at large scale, and establishing practices 
which we hope will enable this research to be continued beyond the immediate lifetime of the 
project. 
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