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1. Introduction 

Already a huge amount of human speech is available on the web, in the form of podcasts, 

radio and television content, university lectures, political speeches and much else.  If we could 

somehow observe it, there is the potential of confronting social-science theories of spoken 

language with data on an unprecedented scale.   Our particular interest is in the pervasive and 

subtle phenomenon of prosody (rhythm, stress and intonation).  Theories about prosody 

ultimately capture correlations between acoustic form and grammar (phonology, morphology, 

syntax, semantics, and pragmatics).  We would like to test and refine such theories using large 

web-sourced datasets---in particular, datasets consisting of hundreds or thousands of utterances 

of a single short word sequence. 

We leveraged our work off web sites that index audio content with transcriptions obtained 

with automatic speech recognition (ASR).  By providing textual transcriptions, content providers 

intend to make spoken language searchable, so that users can find content they are interested in.  

While the transcriptions that are provided by current technology have variable quality at the 

sentence level, accuracy is often better than 50% at the level of short, common word sequences.  

This makes it possible to create targeted datasets from web sources, using a combination of 

simple programs and hand work. 

The purpose of collecting the targeted datasets is to evaluate hypothesized correlations 

between acoustic form and grammatical and contextual features, and to identify the particular 

acoustic features (such as pitch, duration, intensity, or vowel quality) that are significant in 

marking prosodic distinctions.  To do this, we use a machine learning classification paradigm, 

where a classifier is trained to make a binary distinction based on acoustic measures.  Trying to 

create an acoustic classifier that correlates with a grammatical/contextual feature provides a 

powerful test of the significance of the feature in the output side of the linguistic system. 

This document is organized as follows.  Section 2 describes the “harvest” portion of our 

workflow, where a preliminary dataset is collected from web sources, mainly by automatic 

methods.   Section 3 is concerned with phonetic analysis, acoustic measurements, and machine 

 5/11/2011 1

Mats
Typewritten Text

Mats
Typewritten Text
                     Version of May 11, 2011

Mats
Typewritten Text



learning.   Section 4 addresses the question of comparing results that are obtained from web-

derived datasets with results from data obtained in the lab.   Section 5 (not available in this draft) 

will describe the project organization, lessons learned, prospects for the web-dataset 

methodology, and the like. 

 

2. Harvest procedure 

Using Unix tools, we implemented a harvest procedure that automatically collects a 

preliminary dataset for a fixed target.  Each datum is a 30-second audio snippet that surrounds a 

possible token of the target word sequence.  The procedure interacts with websites that index audio 

content transcriptions derived by ASR, and in its outline mimics what a human user would do to 

retrieve audio content from the website.  Figure 1 gives part of a page that results from searching 

for the word sequence “in my opinion” at audio.weei.com, a web site for the Boston sports radio 

station WEEI.  This page represents then hits---for each hit the name of a radio program is 

displayed, together with the time offset for the target in the audio file.  Figure 2 gives a similar 

page at mediasearch.wnyc.org, a site of the New York public radio station WNYC. 

A user clicking on the first hit in Figure 1 brings up the page in Figure 3, which is a flash-

based audio player, together with a transcription of a context that surrounds the target.  The user 

can click to play the target or the whole file, and is invited to distribute a link on social media, or 

download the audio file. 

A user who wanted to collect tokens of the word sequence “in my opinion” on WEEI or 

WNYC would visit each of about 50 pages that display ten hits each, and visit pages for 

individual hits by following links from these pages.  At each individual page, an mp3 audio file 

would be downloaded.  Time offsets and other data such as the surrounding context in the ASR 

transcription would also be recorded.  In mimicking these steps, our harvest procedure retrieves 

web pages using curl, a command line program that retrieves pages designated by URL.  Simple 

text processing is used to extract information such as the time offset and the URL of the mp3 from 

the html-encoded pages. 
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Figure 1. Part of a browser display at audio.weei.com with hits for “in my opinion”.  A time 

offset is included for each hit.  The url encodes the target as “in+my+opinion”, while 

“start=20” requests hits 20 through 29. 
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Figure 2.  Page at mediasearch.wnyc.org displaying hits for “in my opinion”.  Time offsets and 

an ASR transcription of the context are included. 
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Figure 3.  A player at audio.weei.com displaying a hit for “in my opinion”.  The SHARE button 

creates links in social media.  DOWNLOAD  enables the user to retrieve an mp3 audio file.  The 

SEARCH RESULTS box gives the time offset and an ASR transcription.   Clicking on an 

individual word starts the player shortly before the word.   

 

We exemplify the automatic harvest procedure with a retrieval of about 450 possible tokens of 

the word sequence “and I think” at mediasearch.wnyc.org.   Hits are designated by natural 

numbers, and in file names these indices are appended to a base name derived from the target.   

Thus andithink466.param is a file associated with hit 466.  As shown in Figure 5, this file records 

the URL of the web page for the hit, the URL of the mp3, the time location of the hit in the audio, 

and the left and right contexts for the token.  The file andithink460.hits is an html file representing 

ten hits, including hit 466.  Figure 6 displays the commands that were executed in retrieving 

andithink460.hits. The page is retrieved with curl using the target URL as a parameter. After 

retrieving a file, the procedure sleeps for 25 seconds, to control the rate at which server is 

accessed. 
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INDEX   466 
HIT     http://mediasearch.wnyc.org/m/37248530/world-on-the-edge.htm 
MP3     http://feeds.wnyc.org/~r/wnyc_bl/~5/ExTC2araG6I/bl022511cpod.mp3 
SEEK    758.939 
TS      12:44 
LEFTCONTEXT     you know we were climate took matters. We are changing our 
position 

RIGHTCONTEXT     that was one of the most dramatic things to come out of -- 
that's extraordinary day heat wave and drought that Russia 

 
Figure 5.  The file andithink466.param.  The values of HIT and MP3 are urls.  SEEK and TS 

specify the time offset in different notations. LEFTCONTEXT and RIGHTCONTEXT are the context 

derived from speech recognition that is specified on the WNYC page.  The context is nearly 

correct in this case. 

 
echo "getting Data/andIthink460.hits with curl" >> Log/andIthink1.loga 
curl --verbose --location --output Data/andIthink460.hits 
'http://mediasearch.wnyc.org/search?q=%22and%20I%20think%22&start=460' 

sleep 25 
cat Data/andIthink460.hits | awk -f extracthitpages.awk BASE="andIthink" 
INDEX=460 >> andIthink2.sh 

Figure 6.  Commands that retrieve andithink460.hits, an html page representing ten hits for 

“and I think”, and extract parameters from that page.  Text processing is peformed with the 

awk programming language. 

 
echo "getting Data/andIthink460.hits with curl" >> Log/andIthink1.loga 
curl --verbose --location --output Data/andIthink460.hits 
'http://mediasearch.wnyc.org/search?q=%22and%20I%20think%22&start=460' 

sleep 25 
cat Data/andIthink460.hits | awk -f extracthitpages.awk BASE="andIthink" 
INDEX=460 >> andIthink2.sh 

Figure 7.  Commands from andithink1.sh that retrieve andithink460.hits  (which is an html 

page representing ten hits for “and I think”) and extract parameters from that page. 

 
The lines in Figure 6 are a part of a bash shell program andithink1.sh that retrieves fifty html 

files andithink0.hits … andithink490.hits, each of them representing 50 hits. The shell 

program is created with an awk program master.awk, parameterized as follows: 

gawk -f master.awk -v TARGET='and+I+think' -v RESULTS=500 
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The TARGET parameter sets the target word sequence, while the RESULTS parameter indicates 

the number of hits to be retrieved.  The result of this call is the shell program andithink1.sh, as 

well as an additional program andithink.sh that is used to trigger the entire retrieval. 

The last line in Figure 6 passes the hits file andithink460.hits through an awk program 

extracthitpages.awk, resulting in as sequence of shell commands that are partially shown in 

Figure 7.  The line calling curl retrieves the html page for hit 461, putting it in 

andithink461.hit.  The remaining lines write information into a tab-delimited parameter file 

andithink461.param.  HIT is the URL of the hit page; SEEK and TS are time offsets in different 

notations; LEFTCONTEXT and RIGHTCONTEXT give the context for the target that is shown for hit 

461 on andithink460.hits.  MP3 is the url of the mp3 audio file, which is extracted from 

andithink461.hit by an awk program extractmp3name.awk. The other information is extracted 

from andithink460.hits by extracthitpages.awk. The shell program andithink2.sh contains a 

sequence of commands like this for each hit index. 

 
echo "INDEX     461" > Data/andithink461.param 
echo "HIT       http://mediasearch.wnyc.org/m/36985155/analysis-of-events-in-

egypt.htm" >> Data/andithink461.param 
curl --location --output Data/andithink461.hit 

http://mediasearch.wnyc.org/m/36985155/analysis-of-events-in-egypt.htm 
sleep 25 
cat Data/andithink461.hit | awk -f extractmp3name.awk >> 

Data/andithink461.param 
 
echo "SEEK      74.359" >> Data/andithink461.param 
echo "TS        1:18" >> Data/andithink461.param 
echo "LEFTCONTEXT       yet we've seen that demonstrated. They're trying to 

stake out some ground" >> Data/andithink461.param 
echo "RIGHTCONTEXT       that's what these statements mean at this point. On 

where they convey that they understand egyptians don't trust us to move our 
" >> Data/andithink461.param 

 
Figure 8.  Commands in shell program andithink2.sh pertaining to hit 461. 

 

The final steps are retrieving an mp3 from the server, and cutting the mp3 to a shorter 30-

second segment that surrounds the target.   The mp3 is retrieved with curl, while cutting is 

accomplished by cutmp3, a command line program that manipulates mp3 files.  Both of these steps 

are triggered by the shell program andithink.sh, which also calls andithink1.sh and andithink2.sh. 
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count description 

50 html files andithink0.hits … andithink50.hits with 10 hits each 

460 html hit files andithink1.hit … andithink500.hit 

462 param files andithink1.param … andithink500.param 

456 mp3 files andithink1.mp3 … andithink500.mp3 

450 cut mp3 files andithink1-b.mp3 … andithink500-b.mp3 

3 shell programs andithink.sh andithink1.sh andithink2.sh 

? log files … 

 

Figure 9.  Files created in a harvest for the target “and I think”. 

Figure 9 tabulates the files that were created in the andithink harvest. The sum size of the files 

is 4.2G.  The time duration for the harvest is about eleven hours.  Much of this time is occupied by 

the process sleeping.  The entire process it triggered with the call to master.awk given above, 

followed by a call to andithink.sh.  Thus for the user, collecting the information in Figure 8 is 

accomplished easily. 

In summary, the harvest component uses command line programs to retrieve web pages and 

audio files and to cut audio files, uses the awk programming language for text processing, and uses 

a make, awk, and bash scripts to control the process.  We found these simple methods to be 

optimal because of their flexibility. 

The harvest component was developed incrementally at Cornell over the course of a year.  It is 

being used regularly for harvests at Cornell and at McGill, and has been used in a teaching context 

in a seminar at Cornell.  Using the component requires no more than familiarity with the Unix 

shell environment.  The procedure has been confirmed run in Redhat Enterprise Linux, Mac/OS X, 

and Windows/Cygwin operating system environments.  

Because different websites represent information in slightly different ways, the text processing 

programs extracthitpages.awk and extractmp3name.awk need to be rewritten for each site, and 

may also need to be debugged when a site changes its representation.  Sampling data from 

different sources is clearly advantageous, because it increases the diversity and size of the dataset.  
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In the final version of this white paper, we plan to include information about multiple working 

specializations to different websites. 

The text processing programs use line-based text processing, and do not parse the html.  We 

experimented with software systems that parse the html, and with xgawk, a version of awk that 

iterates through html elements, rather than lines in the file.   With the former, there were 

difficulties with apparent ill-formedness in the html.  We had success with xgawk, but opted for 

the simpler solution because of difficulty in getting it to run consistently on all of the operating 

systems we work with. 

In the time remaining until the June 2011, we anticipate not making substantial additions to the 

software, except providing specializations to multiple sites.   There is time for substantial 

additional software development in the NSF-funded project at Cornell, which was funded with a 

two-year period ending in July 2012.  Here we will sketch plans for further software development. 

Automated filtering and segmentation for fixed targets 

Suppose a hundred tokens for a fixed target (such as “than I did” or “in my opinion”) have 

been hand labeled with word and phoneme boundaries, and that many more possible tokens are 

available from the web harvest.  The hand-labeled data provide a training set that should be useful 

in reducing the amount of human labor required in extending the dataset.  We would like to 

automatically separate actual tokens from non-tokens, identify the time interval occupied by a 

target token, and perform phone-level segmentation of the target. 

In a pilot investigation, we trained an HMM recognizer on 90 tokens from the thanidid1 

dataset using the HTK toolkit, and used the recognizer to obtain a phone-level segmentation of 

additional tokens.  While the results have not been evaluated, HMM models trained in this way on 

the phone sequence in the fixed target are impressionistically appear good at segmenting novel 

tokens.   We plan to validate the automatic segmentation by determining whether results in SVM 

classification focus are as good with automatic segmentation as with hand segmentation.  Second, 

with a probabilistic acoustic model of the target available, it is possible to evaluate information-

theoretically the hypothesis that a given segment of the signal contains a token of the target.  This 

is a possible basis for an automatic filtering algorithm.  Similarly, it should be possible to use the 

HMM acoustic model to find the interval corresponding to the target in the thirty-second sound 

snippet. 
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Deduping 

Online radio content often includes multiple literal copies of the same audio segment.  

Currently, we are identifying duplicates in an ad-hoc way, either in the course of transcription by a 

human annotator, or after transcription.  For an automatic procedure, two sources of information 

are available.  Speech recognition transcriptions, though imperfect, often are identical or similar 

for audio segments that are actual copies.  Since the ASR-determined context is being recovered 

from the website, it is possible to compare the contexts for different tokens by a measure such as 

string-edit distance, to identify possible duplicates.  Second, one can try to compare the actual 

speech signals, by searching for intervals that are copies. This may be complicated by 

transformations in the signal, including noise, digital encoding and decoding, and perhaps time 

compression.    

An interesting intermediate case is provided by distinct utterances of the same sentences, either 

by different announcers or the same one.  One would like to identify these and mark them in the 

dataset, other than eliminate them. 

We call the process of eliminating literal duplicates in the dataset deduping. Currently, we are 

beginning work on it by collecting examples of duplicate tokens. 

 

Alignment of complete transcripts 

Some websites provide complete ASR transcripts for programs.  While the transcripts are 

imperfect, they contain sub-intervals that agree with the actual words uttered, and even the 

incorrect parts should agree in an approximate way with the signal, because they are obtained with 

speech recognition.  Deriving an alignment from a transcription, a signal, and a pronouncing 

dictionary is standard methodology in training a speech recognizer.  We would like to experiment 

with aligning the entire transcript, as an alternative way finding the time limits of the target in the 

signal.   
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3.   Machine Learning Experiments 

3.1 Motivation 
 

In most general terms, the datasets we have collected allow one to address questions of the 

existence and reliability of correlations between the sound signal and grammatical, semantic, and 

pragmatic features postulated in linguistic theories of prosody.  

In particular, the datasets are intended to test theories of how the location of contrastive focus 

is determined by linguistic context and to test theories of how the realization of contrastive focus 

is achieved prosodically. 

This section describes experiments that use machine learning algorithms (aka statistical 

classifiers) to classify web data into semantic categories of focus location according to 

automatically extracted acoustic information.  By comparing different algorithms and the 

acoustic information provided to the algorithms, we can at the same time study the prosodic 

realization of focus. 

This computational approach is possible because the web harvesting provides, for the first 

time, large numbers of natural tokens of specific linguistic constructions in sufficiently large 

numbers to apply quantitative methods. 

The machine learning experiments are designed with two discrete but complementary 

applications in mind: (i) to test and develop models of how a human speaker of English uses 

acoustic prominence to signal contrastive focus; and (ii) to improve the automatic detection and 

prediction of contrastive focus in speech recognition and speech synthesis technologies. 

Here we describe the most studied of our datasets: the comparative clause than I did. In 

comparative sentences such as (1a,b,c), linguistic theory predicts that the location of greatest 

prominence in a than-clause (e.g. than I did) is determined by the content of the main clause. 

When reference varies in the subject position between the main and than-clauses as in (1a), the 

subject pronoun I in the than-clause is more acoustically prominent.  When reference is constant 

in the subject position as in (1b) and (1c), the subject in the than-clause is less acoustically 

prominent.   

 
(1)  a.   She did more [than I did]    Subject focus (category “s”) 

b.   I wish I had done more [than I did]   
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c.   I did more this time [than I did] last time Non-subject focus (category “ns”) 
 

In other words, we have a straightforward way of classifying the data into semantic 

categories independent of prosodic information.  Previous prominence predictors, which attempt 

to compute the location(s) of prominence mainly from the text, use various properties, from a 

word’s part of speech (Altenberg 1987, Hirschberg 1993, Conkie et al. 1999) or predictability 

(Pan & McKeown 1999, Pan & Hirschberg 2001, Gregory & Altun 2004, Brenier 2008) to 

syntactic embeddedness (Chen & Hasegawa-Johnson 2004) or position in a sentence (Sun 2002, 

Gregory & Altun 2004).  The single criterion used here—subject co-reference—is  

straightforwardly computed and is well understood in contemporary linguistic theory. 

Prominence detectors, which attempt to compute prominence from acoustic information, 

typically concentrate on measures of fundamental frequency, the physical correlate of pitch, as 

do the majority of phonetic studies of prominence. Beginning with Fry (1955,1958) and later by 

Lieberman (1960), it became clear that other measures, including amplitude and duration, 

provide at least partial cues as well.  More and more acoustic measures have appeared in the 

literature on acoustic prominence, including measures of voice quality (“spectral tilt”; Sluijter 

and van Heuven 1996a,b, 1997; Campbell & Beckman 1997; Heldner 2001, 2003; Mo 2008), 

vocal tract resonances of particular vowels (Kim & Cole 2005; Erikson 2002; Cho 2005; Cole et 

al. 2007; Mo 2008, 2009) and stop closure duration (Cole et al. 2007). “Hyperarticulation” and 

“featural enhancement” theories (e.g. de Jong 1995, Fowler 1995, Cho 2005, Cole et al. 2007) 

maintain that speakers use more exaggerated articulation, with the effect of greater 

acoustic/perceptual distinctness, and therefore contrastive focus is realized by a complex of 

different acoustic parameters that include but are not limited to pitch.  We took the approach of 

including as many measures as possible, although as discussed below, the best performing 

classifiers turned out to be those using only a handful of these measures. 

Phonologists have demonstrated that the mapping between prosodic prominence and 

contrastive focus is not direct, but involves intermediate, abstract categories like stress and pitch 

accent.  According to “pitch-first” theories (e.g. Bolinger 1958, Pierrehumbert 1980, Selkirk 

1995), contrastive focus is realized primarily or uniquely by pitch accents.  Recent experimental 

work (e.g. Rooth 1996, Beaver et al. 2007, Howell 2010) has demonstrated that focus may, 
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under certain pragmatic conditions such as repetition, be realized without pitch, suggesting the 

possibility of “stress-first” models of contrastive focus. 

The rest of this section introduces the machine learning techniques used, their advantages and 

shortcomings, the manner in which acoustic parameters were selected for inclusion in the 

machine learning models, the criteria by which we evaluate their success or failure, some of the 

major finds and their import for linguistic theory. 

 
3.2 Motivation 

 

Two different web harvested corpora of the target than I did are reported in this section.  The 

first corpus (web1) was collected using an earlier iteration of the harvest methodology, described 

in Howell & Rooth (2010).  The tokens were collected via the Everyzing search interface which 

aggregated podcasts from several content providers. This service went offline in June 2009. The 

second corpus (web2) was collected using a similar methodology, modified for the (now defunct) 

search interface multimedia.play.it with content from CBS Radio and powered with the same 

technology found in the earlier Everyzing interface. 

Corpus web1 contained 91 true tokens of the target than I did: 46 tokens with subject focus 

(category “s”) and 45 tokens with non-subject focus (category “ns”).  Corpus web2 contained 

127 true tokens: 62 tokens with subject focus and 65 tokens with non-subject focus. 

 The than-clause and main clause for each token was manually transcribed into English 

prose.  From this transcription, the tokens were manually categorized into one of the two focus 

categories on the sole criterion, described above, of whether or not both main and than-clauses 

contained the same subject (i.e. whether the subject of the main clause was I). 

The extraction of acoustic information required annotation at the phonetic level.  For each 

utterance of “than I did”, the following phonetic segments were annotated (cf. Figure 10): V1, 

the vowel [æ] of than; N1, the nasal [n] of than; V2, the diphthong [aɪ] of I; C3, the stop closure 

and burst of the initial [d] in did; and V3, the vowel [ɪ] of did. 
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 Figure 10.  Spectrogram and manual segmentation for one token of ‘than I did”. 

 

A total of 308 acoustic measures were extracted using the scripting function of Praat 

(Boersma & Weenink 2010).  These measures are listed with descriptions in Appendix A.   

Phenomena of interest included duration, fundamental frequency (f0), first and second formants 

(f1 & f2), intensity, amplitude, voice quality and spectral tilt.  Means or extrema were taken for 

these phenomena at various loci, such as regular intervals within a vowel or at the time of other 

extrema. 

 
3.3 Machine Learning 
 

Two machine learning techniques were used to create predictive models of the data.  Support 

vector machines (SVMs) (Boser, Guyon & Vapnik 1992; Cortes & Vapnik 1995) are a relatively 

recent method of supervised classification that have achieved excellent accuracy in tasks such as 

object recognition (Evgeniou et al. 2000), cancer morphology identification (Mukherjee et al. 

1999) and text categorization (Joachims 1997). Linear discriminant analysis (LDA) (sometimes 
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known as Fisher linear discriminant analysis after Fisher 1936) has been used widely for several 

years in pattern recognition tasks. 

For both classifiers, a decision divides the space of attributes into two half spaces according 

to their labels, in our case “subject focus (s)” or “non-subject focus (ns)”.  In a dataset with only 

two sets of attributes the decision function may be represented geometrically as a line dividing a 

2-dimensional space (Figure 11), or in a dataset with three sets of attributes, a plane dividing a 3-

dimensional space. 

 

 

Separating 
hyperplanes 
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 Figure 11.  Two dimensional hyperplanes separating binary data. 

 

An SVM classifier looks for the optimal model which maximizes the margin between 

classes.  This approach is considered local, since the optimization is based on data at the 

boundaries between classes (i.e. the “support vectors”).  This is illustrated geometrically in 

Figure 12 for a two-dimensional space. For this reason, SVM may outperform many 

conventional classifiers when the number of training data is low and the number of attributes is 

high.  As a maximum margin classifier, SVM also does not assume that the classes are normally 

distributed or that the classes have equal covariances, although it shares with most classifiers the 

assumption that the training and test data are independent and produced in the same way. 
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Figure 12. Support Vector Machine (SVM). Optimal two-dimensional hyperplane and 
maximum margins separating binary data. 

 
 

Another feature of SVMs is the mapping of linear attributes into a multi-dimensional feature 

space, the so-called “kernel trick”.  By expressing the decision function in dual coordinates, it is 

possible to introduce a kernel function.  This greatly reduces the complexity of the algorithm and 

allows it to scale well with a large number of examples.  Although the data should be internally 

Optimal 
hyperplane 

Maximum 
margin 
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scaled for best results, use of a non-linear kernel also avoids the need to transform attributes 

which may be non-linear, such as duration or acoustic energy.  

Many kernel functions have been used successfully in different classification tasks. Hsu et al. 

(2003) recommend a radial basis function (RBF), a non-linear mapping which has been shown to 

also encompass a linear kernel (Keerthi 2003) and behave similarly to a sigmoid kernel (Lin & 

Lin 2003).  Hsu et al. note that the RBF kernel requires only two hyperparameters, while a 

polynomial kernel, for example, will contain two or more, contributing to model complexity. 

(All kernels contain at least one hyperparameter C, cost or constant.)  At the same time, Hsu et al 

also suggest that the results of a linear kernel may be comparable with those of an RBF kernel in 

situations where the number of attributes to be mapped is greater than the number of data 

instances, a situation which obtains with a full model of the web1 dataset.  We consider both 

RBF and linear kernels.  The implementation of SVM used here comes from the libsvm package 

(Chang & Lin 2001) for R. 

An LDA classifier looks for the optimal model which minimizes within-class distance and 

maximizes between-class distance. This approach is considered global, since the optimization is 

based on the mean and covariance of the classes, which are usually obtained via a discriminant 

function of ordinary least-squares or maximum likelihood estimation1. LDA makes many 

assumptions, including normal distribution of classes and homogeneity of covariances. Classes 

in the web1 and web2 datasets of this chapter are well balanced, although it is unlikely that the 

variances of all 308 attributes are normally distributed. Poor results may also obtain if the 

training set is small.  Furthermore, the LDA classifier has been shown to perform best when the 

number of attributes is minimized (ideally no greater than 2 attributes for a binary classifier) and 

the attributes are not intercorrelated (cf. Brown & Wicker 2000). In practice, however, it is often 

possible to obtain good results even with small datasets and data which violate the assumptions 

of normal distribution and homogeneity of covariances (e.g. Lachenbruch 1975; Klecka 1980; 

Stevens 2002).  The implementation of linear discriminant function analysis used here comes 

from the MASS package (Venables & Ripley 2002) for the statistical computing environment R 

(R Development Core Team 2008). 

                                                
1 The R function lda in R package MASS is described by its authors in Venables & Ripley 2002 
Modern Applied Statistics with S, 4th ed., pp. 331-334.  
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Figure 13. Linear Discriminant Analysis (LDA). Optimal two-dimensional hyperplane 
and between-class and within-class distances for binary data. 

 
 
 
3.4 Feature Selection 
 

Within-class 
distance 

Within-class 
distance 

Between-class 
distance 
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Feature selection is a necessity for LDA where the possibility of collinear features exists.  

Indeed, the R implementation of LDA is halted and cannot proceed in case of high collinearity. 

As for SVM, one reason to use this classifier is precisely to avoid costly feature selection; 

nonetheless, feature selection prior to or in the process of building an SVM classifier has been 

shown to improve the generalization accuracy and/or model complexity (and thus computation) 

for those datasets with redundant or irrelevant features. 

Feature selection is also a means of peering into the “black box”, and understanding which 

features are contributing to a model’s generalization accuracy.  For example, a classifier which 

accurately predicts a focus category may be the goal, but we also wish to know which acoustic 

measures are important for this task. The set of acoustic measures used by a classifier to predict 

focus are not necessarily equivalent to the set of acoustic measures that an individual human 

listener may use in the same classification task, but the question of whether and why the 

machine-learning and human sets of attributes are not equivalent is in fact a useful research 

question provided by the classifier. 

Most authors agree that some combination of manual and statistical feature selection 

techniques may be used, although there is no consensus on the ordering or relative importance of 

manual or statistical feature selection.  We used both automatic feature selection and manual 

feature selection, in some cases informed by theoretical expectations and in some cases through 

basic trial-and-error.   

We used a feature selection algorithm VarSelRF (Diaz-Uriarte 2009), which is designed for 

genetic research, in which datasets typically contain large sets of features for relatively few data 

instances.  This algorithm based on a random forests method of classification and uses 

backwards variable elimination. This is a “filter” method of feature selection, since it occurs as a 

kind of preprocessing before a model is trained.  When applied to all 308 features, this algorithm 

selected the following four features in Automated Feature Selection A. 

 
(2) Automated Feature Selection A (from all 308 features) 

 
dur_V2  duration of I 
mean_ f0_ratio ratio of mean fundamental frequency (cf. pitch) in I and did 
f1f2_40_V2 difference between first and second formant values (i.e. vocal tract 

resonances) in I, measured at 40% into the vowel 
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f1f2_50_V2 difference between first and second formant values in I, measured 
at 50% into the vowel 

 
Classifiers using the experimenter-selected feature sets turned out to perform better than 

those using the automated feature sets, although the automation process helped to inform the 

manual selection, since trial-and-error with 308 measures was of course not feasible.  One of the 

best-performing experimenter-selected feature sets contained a different but overlapping set of 

four features. 

 
(3) Experimenter-Selected Feature Selection A 

 
dur_V2  duration of I 
dur_C3 duration of first stop closure (i.e. the silence corresponding to the 

tongue constriction) in did 
mean_f0_ratio ratio of mean fundamental frequency (cf. pitch) in I and did 
 
f1f2_50_V2 difference between first and second formant values in I, measured 

at 50% into the vowel 
 
Several other feature combinations were evaluated (discussed in Howell 2011); only those in (2) 

and (3) are considered here, for ease of presentation. 

Representing a four-dimensional classifier graphically is difficult, but it is possible to get a 

good visual sense of the separation provided by these measures with scatter plot matrices, as in 

Figures 14 and 15. 
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Figure 14.  Pairwise comparison of the web1 data for the four features from 
Automated Feature Selection A. 
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Figure 15.  Pairwise comparison of the web1 data for the four features from 
Experimenter-Selected Feature Selection A. 

 
 
 
3.5  Evaluation 
 

Following convention in the machine learning community, we evaluated our classifiers by 

training them on one set of data (web1) and testing them on a new set of data (web2).  The 

percentage of correctly classified tokens is termed the generalization accuracy rate.  This is 

compared against a baseline accuracy, which is simply the percentage of the most frequently 
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occurring catgory (“s” or “ns”).  Finally, a balanced error rate takes into consideration the 

relative number of false positives and false negatives. 

 
(3) Baseline accuracy 

 
# tokens in largest class of test set 
# tokens in both classes in test set 

 
(4) Generalization accuracy 
 

# of tokens in test set accurately classified 
                         # of tokens in test set 
 
(5) Balanced error rate 
 

# incorrect “s”   *   # incorrect “ns”   * 1 * 100 
           # total “s”             # total “ns”         2 
 
 
3.6 Results 

 

All of the models trained on web corpus dataset web1 achieved generalization accuracy and 

balanced error rate on the second web corpus dataset web2 well above the baseline (accuracy 

51.2/ BER 48.8). The different machine learning methods and feature sets were also quite 

competitive with each other. A summary of results is listed in Figure 16. 
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Figure 16.  Generalization accuracy rates (and balanced error rates) for different machine 
learning models trained on web1 and tested on web2. 

 
 ` 
 
3.7 Discussion 
 

Three observations from these results are of particular note.  First, the results 

overwhelmingly confirm the theoretical predictions for the location of acoustic prominence. The 

machine learning classifiers can predict the semantic categories from acoustic information alone 

with considerable accuracy.  As for those tokens which were erroneously classified, four were 

significant predictors of the human classifiers’ performance, with mean accuracies of 59.0, 28.2, 

23.1 and 17.9 percent.  On further inspection, prominence in these tokens, predicted to be 

greatest on the subject because of a distinct, contrasting subject in the main clause, may plausibly 

be explained by other factors such as speech disfluency or extralinguistic emphasis. 

Second, classifiers with information about fundamental frequency (f0) performed on par or 

better than classifiers which lacked information about fundamental frequency. Experimenter-
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selected feature set A contained the features dur_V2, dur_C3, f1f2_50_V2 and mean_f0_ratio; 

experimenter-selected feature set B contained the first three, but lacked mean_f0_ratio.  Third, 

all of the best-performing classifiers used measures of duration and measures of first and second 

formant differences in the vowel of I.   

The predictiveness of the durational and vowel quality features, and the apparent non-

predictiveness of f0 features, are consistent with hyperarticulation theories of contrastive focus 

realization.  According to this theory, the articulation of I is exaggerated when contrastively 

focused, a speaker taking more time to pronounce it; this extra time also allows formant targets 

for the vowels to fully realized or even overshot.  It also follows that a fundamental frequency 

target may also be fully realized, resulting in a higher peak, although on this account the 

increased f0 peak would be just one of several acoustic cues, rather than the primary cue. 

On the other hand, pitch-first theories generally require pitch accents overlaid on sentence-

level stress, and sentence-level stress is realized by acoustic cues of duration and vowel quality.  

So it is plausible that, in the absence of accurate f0 measurements—algorithms for extracting f0 

are notoriously fallible—acoustic cues of sentence-level stress are the next-best set of predictors.   

The scientific literature on acoustic prominence is dominated by discussion of fundamental 

frequency. (Kochanski 2006 reports that articles about f0 outnumber articles investigating other 

cues by nearly 5 to 1.)  The predictiveness of duration and vowel quality and the apparent non-

predictiveness of f0 is therefore quite significant. 

 Finally, it is traditionally held that prominence is “syntagmatic”, meaning that 

prominence is processed relative to the sentence that is being uttered (e.g. Jakobson, Fant and 

Halle 1951; Trubetzkoy 1935,1939; Lehiste 1970; Ladefoged 1975; Hyman 1978). This explains, 

for example, how a word may be perceived as prominent in either fast or slow speech.  Ladd 

(1991,1996) argues, however, that prominence in an utterance is also processed 

“paradigmatically”, relative to ways the utterance could have been produced.  Many of the 

measures we used were syntagmatic, such as ratios of measures taken from I and the vowel in 

did.  Strikingly, the best-performing classifiers did not use these syntagmatic measures, but 

instead used measures taken from one or other of the vowels.  This suggests that listeners may be 

using more paradigmatic information than previously assumed.  From a practical standpoint, it 
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also suggests a more efficient automatic detection of focus which is localized to the word or 

syllable level. 

 

4.  Lab Experiments 
 
4.1 Cross-validation of Harvest and Laboratory Data  
 

Most data linguistic theories are based on are based on introspective intuition or on data 

collected in the lab. Lab experiments are usually scripted and are usually very close to reading, 

and far from spontaneous speech. Experiments often reveal the interest of the researcher since 

they contain an untypical proportion of certain examples of interest. In other words, the 

generalizability of much of our knowledge of the acoustic correlates of linguistically relevant 

factors is questionable. Cross-validation of laboratory results with more naturalistic and 

spontaneously produced data could solve this methodological problem, but such data is hard to 

come by. 

There is of course a field of corpus linguistics which works with data that were produced 

under more natural circumstances, for example the Switchboard Corpus (Godfrey et al. 1992), 

which is available through the Linguistics Data Consortium. It consists of conversations between 

two people whose task was to schedule a meeting over the phone. This type of data is more 

naturalistic that typical experimental data since it involves a rather unconstrained conversation 

between two people. However, the corpus is not particularly big, and many types of 

constructions of linguistic interest will not appear at all. The same issue of scale applies to other 

spoken corpora. 

Our harvest procedure can fill this gap in our methodological toolbox: The amount of data on 

available online is vast, and if we find a way to systematically harvest data sets of interest, then 

we can complement lab-results with real-life data, and thus cross-validate data collected in a 

controlled environment with comparable data collected in a much noisier and much more 

variable channel. 

This cross-validation cuts both ways: results obtained under the more controlled conditions in 

a lab-environment can inform our analysis of naturally-occurring data, where there is far bigger 

variability due to differences in recording conditions, differences in register and levels of 

formality. The lab data can be used as a standard of comparison and a guide in developing 
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acoustic measures to be extracted from corpus data. Conversely, the new data from harvested 

data sets will provide a way to validate results obtained in lab environments. Sources of variation 

that are either excluded in lab experiments or controlled for (speaker and item effects), may lead 

to reliable results that turn out to be irrelevant when looking at real world data, due to the much 

broader range of factors influencing the signal.  

 
4.2 Matlab Scripts to Conduct Production and Perception Experiments 
 

A suite of matlab scripts was developed, that provides a platform to conduct production and 

perception experiments. In production experiments, we collect particular data points of interest 

by prompting participants to say them out loud as naturally as possible. In perception 

experiments we ask people to rate acceptability, or to annotate the data for prominence based on 

their own intuition (Cole ), or we conduct a ‘context-retrieval’ task (Gussenhoven 1983). 

The production experiments are scripted and the resulting data can sound monotonous since 

participants fall into a reading pattern can sound quite unlike spontaneous speech. There are 

several options that help avoid such a drab reading intonation: The participant can be asked to 

memorize the sentence, and on the recording screen the sentence is no longer visible. This way, 

the sentence has to be produced from memory, which makes it less likely that the participant will 

read the sentence off the screen without really processing it.  It is also possible to conduct 

pseudo-dialogues: We pre-record the part of the interlocutor. Participants see the entire dialogue, 

and then press a key when they’re ready. They then hear the part the other person says played 

through their headset, and have to respond their part as naturally as possible. In our experience, 

this works well in prompting more natural productions.  

The input to the matlab scripts is a simple tab-delimited spread sheet, with the data organized 

into items and conditions. The script then creates a pseudo-randomized playlist drawn from the 

list. There are several possible designs: Latin square, where every participant sees one condition 

from each item, but an equal number of trials from each condition over the entire experiment. 

Between subjects, were every participant only sees the same condition from each item. Or 

Within subjects, were every participant sees every condition from each item in a pseudo-

randomized order, such that no condition is repeated more than once and there are no adjacent 

trials from the same item.  
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The recorded data is then ‘filtered’, which means that an RA goes through them and checks 

whether the participant said exactly the utterance that she was scripted to say. If there is a slight 

deviation either the text transcript can be changed by the RA, or the utterance can be marked as 

‘problematic’ and excluded from analysis. The filtering is done by a praat script similar to the 

one we use for filtering the harvest data. The filtering is the only manual step in the analysis 

process. 

After filtering, the data is forced aligned using the HTK force aligner (we are using a set of 

scripts made available by Kyle Gorman (UPenn), which have since been superceded by the set of 

Python scripts underlying the Penn-Forced-Aligner. So far, we haved trained our forced aligner 

on 10 hours of lab speech collected in our own lab, while the Penn-Forced Aligner is trained on 

corpus data. The scripts looks up a phonetic transcription of the utterance in the CMU 

pronunciation dictionary, and then goes through various rounds of estimating the best alignment 

between transcription and sound file. The output of the forced-aligner are praat-textgrids which 

contain annotation tiers for a segment-by-segment and a word-by-word annotation. 

After forced-alignment, additional annotations are added to the textgrids. The tab-delimited 

experiment file consists a column which indicates the ‘words of interest’ of every utterance. This 

column contains the text of the utterance in which words in whose acoustic properties we’re 

interested in are marked. This information is used to introduce a special ‘word of interest’ tier in 

the textgrids. We can then use a Praat script to extract various acoustic measures for each word 

of interest and subject this to acoustic analysis.  

This experimental pipe-line is working quite effectively now, and we have already conducted 

many experiments using it. The remainder of this section summarizes our first complete series of 

experiments cross-validating a harvest result.  

 

4.3 Than-I-Did Experiments 

 

In the past 6 months, after our matlab scripts and the associated HTK forced-aligner were 

ready to go, we have conducted a series of cross-validation experiments on our  first data set, the 

‘than I did’ set. In total, we conducted 3 experiments.  
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4.3.1 Laboratory Experiment 1:  
Naive Prominence Annotation of Harvest Data (Perception) 

 

In order to evaluate the performance of the machine learning classifiers, we conducted a 

“human classifier” experiment using a subset of the harvested speech data. A subset of 64 tokens 

from the web2 corpus dataset was chosen: the first 32 of each focus category. From each 

soundfile, the sequence “than I did” was extracted.  The information presented to participants of 

the perception experiment was limited in this way in order to more closely replicate the limited 

information available to the machine learning algorithms: neither the machine classifier nor the 

human listener had the preceding or following acoustic information, nor did they have any 

grammatical or pragmatic context. 

Forty individuals participated in the perception experiment, which was conducted at the 

prosody lab at McGill University.  Participants were compensated for their time.  The data of two 

participants was not analyzed because the subjects reported making errors.  The stimuli were 

played one at a time, in random order, with no category repeated more than twice.  After each 

stimuli, the listener was asked to complete two tasks: first, to choose whether “I” or “did” had 

greater prominence; second, to rate confidence in their choice on a scale from 1 (“very 

confident”) to 5 (“very uncertain”). Participants’ confidence rating turned out to be a very 

significant predictor of their performance on a given stimuli (generalized linear model: σ= 0.031, 

z= -10.81,p<0.001). 

 
(6) Questions elicited in laboratory perception experiment 
 

Question 1:  Which is more prominent: I or did?  
Question 2:  How confident are you?   

(very uncertain) 1 2 3 4 5 6 7 (very confident) 
 

The human acoustic classifiers performed on par with the machine learning classifiers. The 

38 listeners in the perceptual experiment achieved a mean accuracy of 85.9 percent, median 

accuracy of 89.1 percent and balanced error rate of 14.1 percent. Participants’ individual 

accuracy rates ranged from 64.1 to 95.3 percent and their balanced error rates ranged from 4.7 to 

35.9 percent. 
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 Figures 17 and 18. Distributions of listener accuracies and balanced error rates in 
Laboratory Experiment 1. 
 
 

The features which were most predictive in the machine learning experiments were also 

significant predictors of listeners’ responses. In generalized linear mixed models that 
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incorporated speaker and item as random effects (see Figure 19), there were main effects for 

each of the acoustic variables, with the notable exception of mean f0 ratio in the model using 

experiment selection A.  There were no effects for participant or item. 

 

 
EXPERIMENTER SELECTION A: duration_V2, duration_C3, f1f2Time50_V2, f0_ratio 
 
Random effects: 
Groups Variance Std. Dev. 
Participant 0.041699 0.20420 
Item 0.033360 0.18265 
 
Fixed effects 
 Estimate Std. Error z-value p-value 
Intercept 1.289440 0.514789 2.505 0.0123  * 
duration_V2 36.567667 2.049602 17.841 <2e-16  * 
duration_C3 -45.726612 3.095865 -14.770 <2e-16  * 
f1f2Time50_V2 -0.003150 0.000293 -10.749 <2e-16  * 
mean_f0_ratio -0.062636 0.235012 -0.267 0.7898  n.s. 
 
 
 
EXPERIMENTER-SELECTED B: duration_V2, duration_C3, f1f2Time50_V2 
 
Random effects: 
Groups Variance Std. Dev. 
Participant 0.041699 0.20420 
Item 0.033360 0.18265 
 
Fixed effects 
 Estimate Std. Error z-value p-value 
Intercept 1.231643 0.463617 2.657 0.0079   * 
duration_V2 36.415015 1.977036 18.419 <2e-16   * 
duration_C3 -45.492161 2.971366 -15.310 <2e-16   * 
f1f2Time50_V2 -0.003152 0.000293 -10.758 <2e-16   * 
 

 
Figure 19.  Summary of generalized linear mixed models for listener responses to a 
subset of the web corpus data using predictors from the hand-selected feature sets.  
Statistical significance (p<0.01) indicated by asterisks. 
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4.3.2 Experiment 2: Cross-Validation (Production) 
 

 In order to compare natural speech found in the web data to speech elicited in the 

laboratory, we conduction a speech production experiment. 16 written stimuli containing the 

target than I did were constructed by the experimenters based on actual tokens from the web 

corpus. The 16 stimuli were further divided into different experimental conditions, such as 

question and statement (discussed in Howell 2011 but omitted here for space), and were 

balanced between the two focus categories, “s” and “ns”. 27 individuals participated, although 

one participant’s speech failed to be recorded, leaving a total of 26 participants. 

The written stimuli were presented to participants on a computer screen. After reading the 

text aloud, participants were asked to rate the naturalness of the written stimuli on a scale from 1 

(very natural) to 5 (very awkward).  The mean rating for the individual stimuli ranged from 1.72 

to 3.08; the overall mean was 2.35.  19 recordings were discarded due to disfluencies, such as 

false starts, hesitations or utterances that did not match the written stimuli.  Automatic alignment 

failed on 3 files, leaving a total of 394 usable tokens. 

We applied the same machine learning classifiers which were trained on the harvested data 

(web1) to the laboratory-elicited data.  As before, classifiers using the experimenter-selected 

feature sets turned out to perform better than those using the automated feature sets.  The 

generalized accuracy rates and balanced error rates were somewhat lower than those achieved by 

the web-trained/web-tested classifiers, but considerably higher than the baseline and on par with 

the human performance rates. 

 
Web-trained, lab-tested classifiers 
  lab 
Feature set Baseline SVM (RBF) SVM (linear) LDA 
1. Full  
    (no. features = 308) 51.0 72.3 (19.9) 82.2 (16.3) 

-- 

2. Automated feature selection A 
    (no. features = 16) 51.0 81.5 (18.1) 84.5 (14.4) 74.4 (21.8) 
3. Automated features selection B 
    (no. features = 4) 51.0 83.8 (16.1) 74.1 (20.9) 71.3 (21.9) 
4. Experimenter-selected A 
    (no. featuers = 4) 51.0 82.2 (16.8) 74.6 (21.2) 75.1 (19.4) 
5. Experimenter-selected B 
   (no. features = 3) 51.0 85.8 (11.9) 87.3 (11.0) 84.3 (12.9) 
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Figure 20.  Generalization accuracy rates (and balanced error rates) for different machine 
learning models trained on web1 & web2, and tested on lab. 
 

Finally, we trained machine learning classifiers on the laboratory data (lab) and tested them 

on the web data (web1 and web 2 collectively).  We used the same algorithm VarSelRF for the 

automated feature selection.  Note that because the VarSelRF algorithm was applied to a 

different training set (i.e. the laboratory data), instead of the harvested data, it yielded slightly 

different feature sets. The experimenter-selected feature sets are the same.  (Again, see Howell 

2011 for a more exhaustive list of the models considered.)  

 
Lab-trained, web-tested classifiers 

 
Figure 21.  Generalization accuracy rates (and balanced error rates) for different machine 
learning models trained on lab, and tested on web1 & web2. 

 

Again, classifiers using the experimenter-selected feature sets turned out to perform better 

than those using the automated feature sets.  The generalized accuracy rates and balanced error 

rates were lower than those achieved by the web-trained and web-tested classifiers, but 

considerably higher than the baseline and on par with the human performance rates. 

 The results of these machine learning experiments confirm the data collected in the 

laboratory are sufficiently representative of naturally-occurring speech.  The theoretical 
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predictions for focus placement hold for both corpus and laboratory datasets and both datasets 

support theories of focus realization in which pitch accents and fundamental frequency are not 

the sole correlates of focus. 

 
4.3.3 Experiment 3: Naive Prominence Annotation of Lab Data (Perception) 
 

In the third experiment, human listeners were presented with excerpts of “than I did” taken 

from the laboratory production data recorded in experiment 2.  The experiment was carried out 

with the same methodology used in Experiment 1. Forty-one individuals participated.  

Participants’ confidence rating turned out to be a very significant predictor of their performance 

on a given stimuli (generalized mixed-effects linear model: σ= 0.05844, z= 7.429, p<0.001). 

The human acoustic classifiers performed on par with the machine learning classifiers. The 

41 listeners in the perceptual experiment achieved a mean accuracy of 78.5 percent, median 

accuracy of 81.3 percent and mean balanced error rate of 13.1 percent. Participants’ individual 

accuracy rates ranged from 53.1 to 96.9 percent and their balanced error rates ranged from 3.7 to 

29.3 percent. 

 
 
 

  
 

Figure 22. Distributions of listener accuracies and balanced error rates. 
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The features which were most predictive in the machine learning experiments were also 

significant predictors of listeners’ responses. In generalized linear mixed models that 

incorporated speaker, listener and item as random effects (see Figure 23), there were main effects 

for each of the acoustic variables.  There were no effects for participant, speaker or item. 

 
 
 
EXPERIMENTER SELECTED A: duration_V2, duration_C3, f1f2Time50_V2, f0_ratio 
 
Random effects: 
Groups Variance Std. Dev. 
Participant 0.0834607 0.288896 
Speaker 0.0162850 0.127613 
Item 0.0081426 0.090236 
 
Fixed effects 
 Estimate Std. Error z-value p-value 
Intercept 5.182e+00 1.114e+00 4.650 3.33e-06    * 
duration_V2 1.447e+01 3.919e+00 3.692 0.000222   * 
duration_C3 -1.821e+01 8.370e+00 -2.176 0.029581   * 
f1f2Time50_V2 -5.662e-03 6.301e-04 -8.985 < 2e-16      * 
mean_f0_ratio 4.082e-01 1.498e-01 2.724 0.006448   * 
 
 
 
EXPERIMENTER-SELECTED B: duration_V2, duration_C3, f1f2Time50_V2 
 
Random effects: 
Groups Variance Std. Dev. 
Participant 0.0834607 0.288896 
Speaker 0.0162850 0.127613 
Item 0.0081426 0.090236 
 
Fixed effects 
 Estimate Std. Error z-value p-value 
Intercept 5.261e+00 1.123e+00 4.685 2.80e-06 * 
duration_V2 1.398e+01 4.004e+00 3.492 0.00048  * 
duration_C3 -1.742e+01 8.470e+00 -2.057 0.03969  * 
f1f2Time50_V2 -5.367e-03 6.145e-04 -8.734 < 2e-16   * 
 

Figure 23.  Summary of generalized linear mixed models for listener responses to a 
subset of the laboratory-elicited production data using predictors from the hand-selected 
feature sets.  Statistical significance (p<0.01) indicated by asterisks. 
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The high performance of the machine learning classifiers demonstrate that they can mimic 

human behavior.  The evidence from the perception experiments that humans use the same sets 

of acoustic features suggests that the machine learning classifiers are useful representations of 

human behavior. 
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